

BEYOND THE SURFACE: UNDERSTANDING How Encoders Work in Transformers

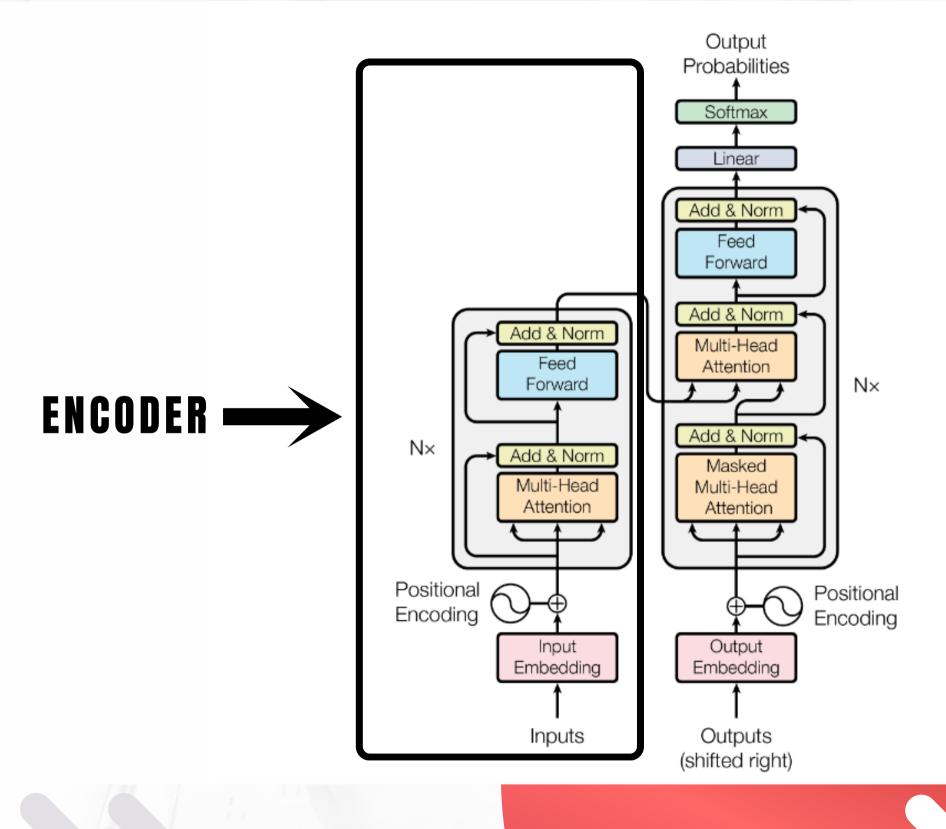
Generative AI Deep Dives, Key concepts for Transformers - Part 6

GENERATIVE AI For All

DINESH LAL (DIRECTOR, DATA SCIENCE)

- This document explains the topic
 Encoder in Transformer
 Architectue
- First visual representation is covered
- Then Definition of Encoder, and simple explanation is shared
- In the detailed section, step by step explanation is covered with
 - Each stage explanation
 - Each stage inputs and Ouputs,
 - An Example to explain the concepts better

VISUAL REPRESENTATION OF ENCODER



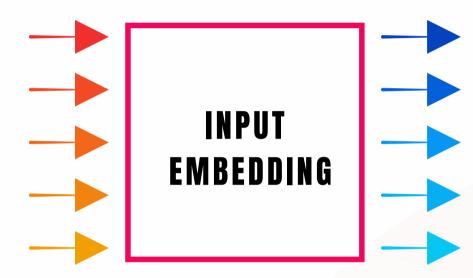
in DINESHLAL

DEFINING ENCODER

- The encoder in a Transformer architecture plays a crucial role in processing input data and preparing it for further processing by the decoder. It consists of several layers,
- Each comprising two main components: self-attention mechanism and feedforward neural network. The encoder operates sequentially, with each layer transforming the input data through a series of operations
- Imagine a conductor in a giant orchestra. Their job is to listen intently to all the musicians and understand how each instrument contributes to the overall sound. This is exactly what the encoder in a transformer architecture does! Instead of musical notes, the encoder works with words or other elements in a sequence of data.

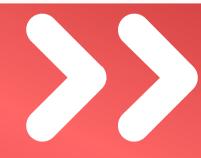
- The input sequence, typically represented as a sequence of word embeddings or token embeddings, is fed into the encoder.
- Each token in the input sequence is transformed into a high-dimensional embedding vector that represents its semantic meaning in the context of the sequence.

Inputs: Sequence of token embeddings representing the input text.



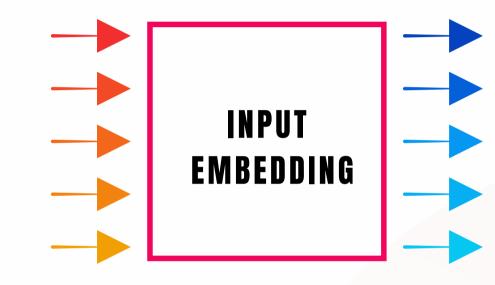
Outputs

Embedded representations of each token in the input sequence.



in DINESHLAL

Inputs: The Cat sat on the Mat.



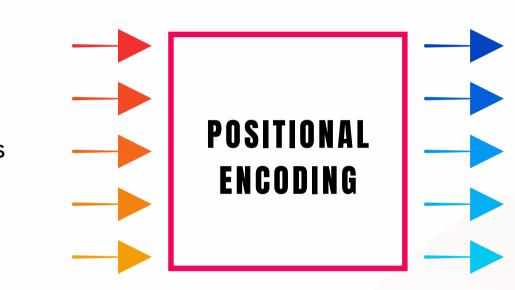
Outputs

[embedding("The"), embedding("cat"), embedding("sat"), embedding("on"), embedding("the"), embedding("mat")]

- Since Transformers do not inherently understand the order of tokens in a sequence, positional encoding is added to provide information about the position of tokens.
- Positional encoding vectors are added to the input embeddings, allowing the model to differentiate between tokens based on their position in the sequence.

in DINESHLAL

Inputs: Embedded representations of tokens.

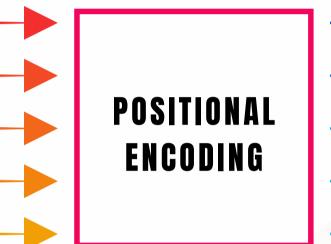


Outputs

Token embeddings with positional encoding added, preserving both token semantics and positional information.

Inputs: [embedding("The"), embedding("cat"), embedding("sat"), embedding("on"), embedding("the"), embedding("mat")]

IN DINESHLAL



Outputs

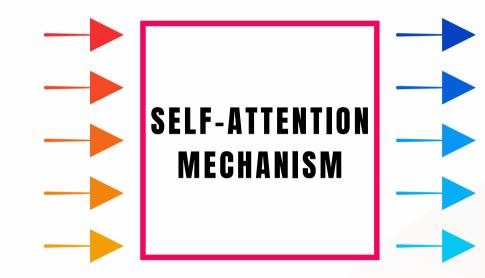
[embedding("The") +
positional_encoding(1),
embedding("cat") +
positional_encoding(2),
embedding("sat") +
positional_encoding(3),
embedding("on") +
positional_encoding(4),
embedding("the") +
positional_encoding(5),
embedding("mat") +
positional_encoding(6)]

- The core of the encoder is the self-attention mechanism, which enables the model to weigh the importance of different tokens in the input sequence when processing each token.
- Self-attention computes attention scores between all pairs of tokens in the input sequence and generates context-aware representations for each token.
- It allows the model to focus more on relevant tokens and less on irrelevant ones, capturing long-range dependencies effectively.

SELF-ATTENTION MECHANISM

Inputs: Token embeddings with positional encoding..

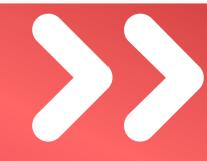
in DINESHLAL



Outputs

- Contextualized
 representations
 of tokens
 obtained
 through self attention
 mechanism.
- Each token

 representation
 captures its
 relationship
 with other
 tokens in the
 sequence.



SELF-ATTENTION MECHANISM

Inputs: [embedding("The") + ____ positional_encoding(1), embedding("cat") + ____ positional_encoding(2), embedding("sat") + positional_encoding(3), embedding("on") + positional_encoding(4), embedding("the") + positional_encoding(5), embedding("mat") + positional_encoding(6)]

Outputs: [contextualized_embe dding("The"), contextualized_embed ding("cat"), contextualized_embed ding("sat"), contextualized_embed ding("on"), contextualized_embed ding("the"), contextualized_embed ding("mat")]

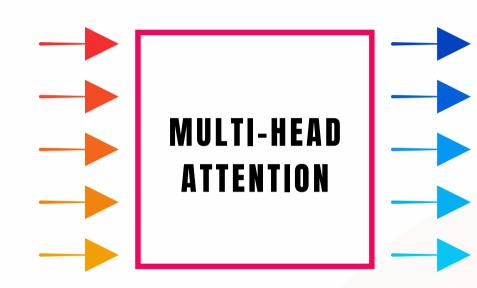
MULTI-HEAD ATTENTION

- To capture different aspects of the input sequence, self-attention is often performed multiple times in parallel, each with different learned projection matrices.
- These parallel self-attention mechanisms are called "attention heads," and they allow the model to attend to different parts of the input sequence simultaneously.

MULTI-HEAD ATTENTION

Inputs: Contextualized representations of tokens from self-attention mechanism.

in DINESHLAL

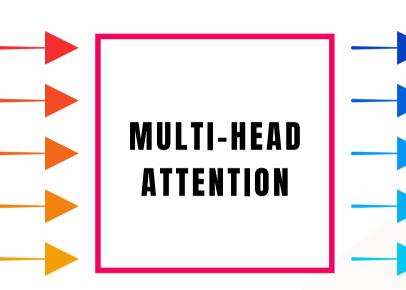


Outputs

Enhanced representations of tokens with multiple perspectives, obtained through parallel selfattention heads.

MULTI-HEAD ATTENTION

Inputs: [contextualized_emb edding("The"), contextualized_emb edding("cat"), contextualized_emb edding("sat"), contextualized_emb edding("on"), contextualized_emb edding("the"), contextualized_emb edding("mat")]



Outputs:

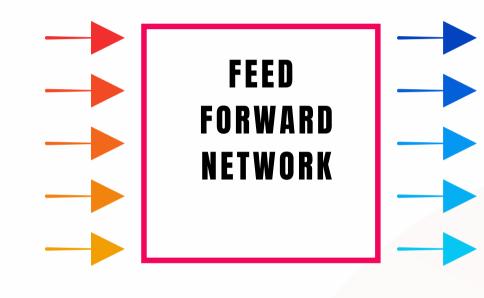
[[enhanced_contextualiz ed_embedding("The"), enhanced_contextualize d_embedding("cat"), enhanced_contextualize d_embedding("sat"), enhanced_contextualize d_embedding("on"), enhanced_contextualize d_embedding("the"), enhanced_contextualize d_embedding("mat")]

FEEDFORWARD NEURAL NETWORK (FFN):

- After self-attention, the output from each attention head is concatenated and passed through a feedforward neural network.
- The FFN consists of two linear transformations separated by a non-linear activation function, such as ReLU.
- It enables the model to capture complex patterns and relationships within the input sequence.

FEEDFORWARD NEURAL NETWORK (FFN):

Inputs: Contextualized representations of tokens, potentially from multiple attention heads.

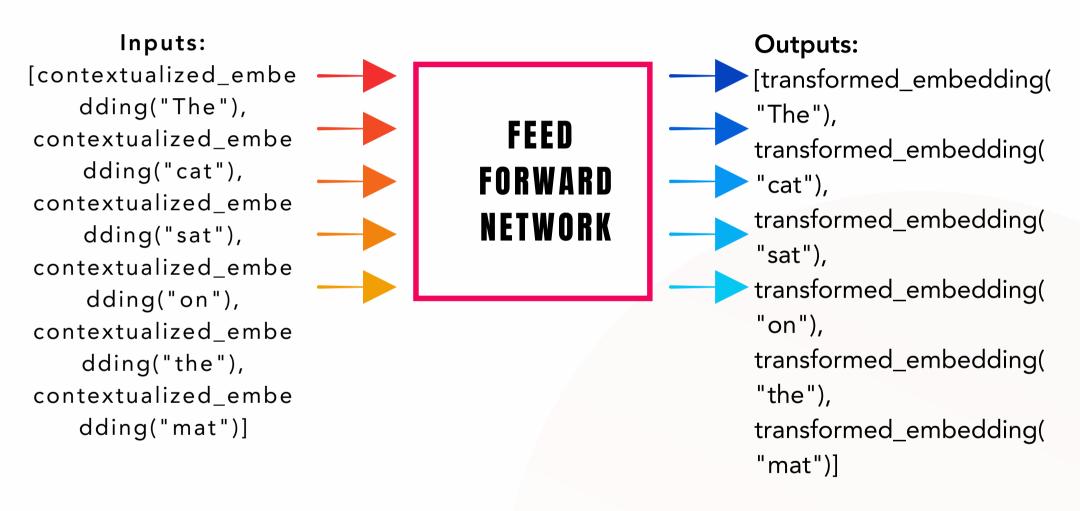


Outputs:

Transformed representations of tokens after passing through the feedforward neural network. This captures complex patterns and relationships within the input

sequence.

FEEDFORWARD NEURAL NETWORK (FFN):



IN DINESHI AI

LAYER NORMALIZATION AND RESIDUAL CONNECTION:

- To stabilize the training process and facilitate the flow of gradients, layer normalization is applied after each sub-layer (self-attention and feedforward network).
- Additionally, residual connections are employed, allowing the original input to bypass the sub-layers and be summed with the output.
- This helps alleviate the vanishing gradient problem and facilitates training deeper networks.

LAYER NORMALIZATION AND RESIDUAL

CONNECTION:

Inputs: Transformed representations

of tokens from

the

feedforward

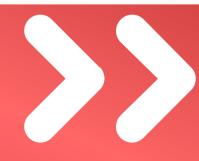
neural network.

in DINESHLAL

LAYER NORMALIZATION AND RESIDUAL CONNECTION

Outputs:

Normalized representations with residual connections applied, preserving information from previous layers while stabilizing training.



LAYER NORMALIZATION AND RESIDUAL Connection:

mat")]

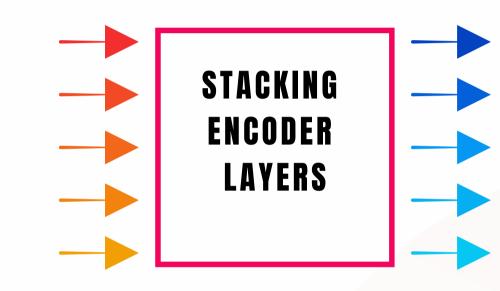
STACKING ENCODER LAYERS:

- The encoder consists of multiple identical layers, each containing a self-attention mechanism and feedforward neural network.
- The output of one encoder layer serves as the input to the next layer, allowing the model to capture increasingly complex patterns and dependencies in the input sequence.

STACKING ENCODER LAYERS:

Inputs: Output representations from the previous encoder layer

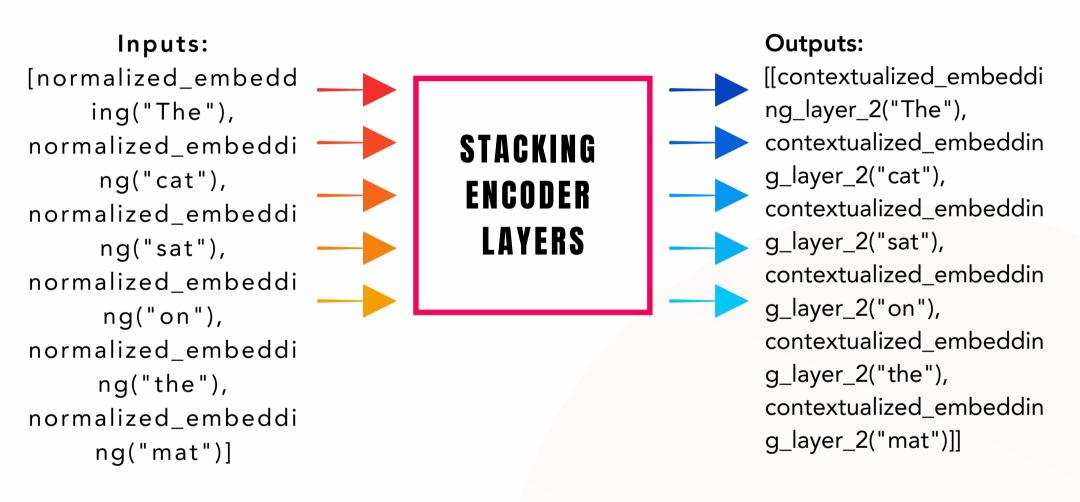
in DINESHLAL



Outputs:

Contextualized representations of tokens from the current encoder layer, ready to be passed to the next layer.

STACKING ENCODER LAYERS:



IN DINESHI AI

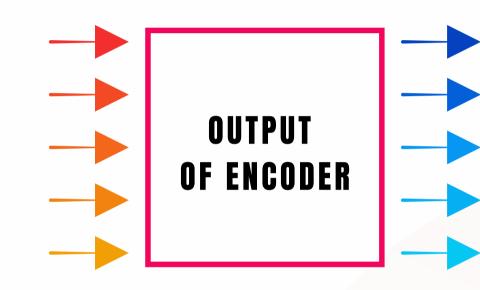
OUTPUT OF ENCODER:

- The final output of the encoder is a sequence of context-aware representations for each token in the input sequence.
- These representations contain rich information about the input sequence and are passed on to the decoder for further processing in tasks like language translation or text generation.

OUTPUT OF ENCODER:

Inputs: Contextualized representations of tokens from the last encoder layer..

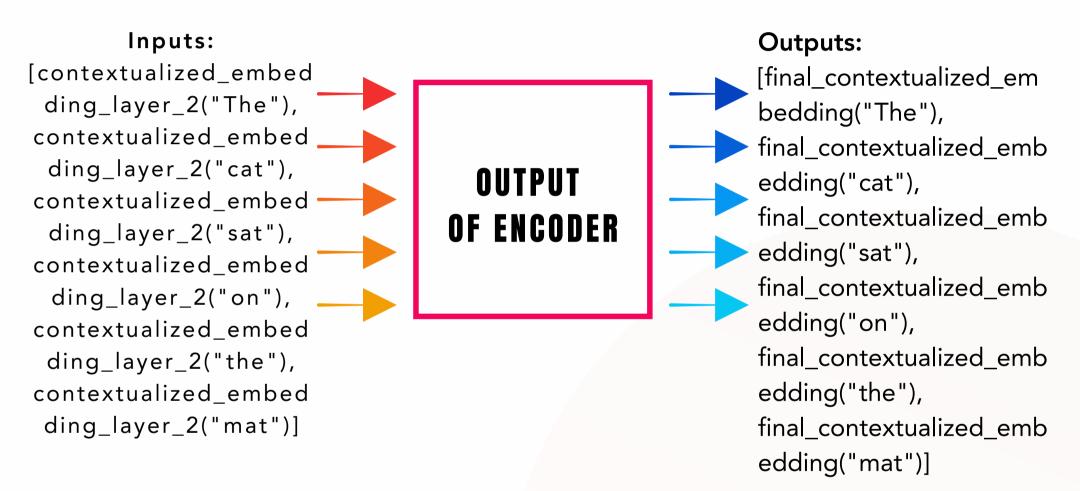
IN DINESHLAL



Outputs:

Sequence of contextaware representations for each token in the input sequence, containing rich information about the input sequence and ready to be passed to the decoder for further processing.

OUTPUT OF ENCODER:



Shanh You

SPECIAL THANKS TO CHATGPT, OPEN AI, COPILOT, GEMINI For the support on content

