UNDERSTANDING
THE GONGEPT OF
“TOKENS™ AND

“TOKENIZATION™
IN GENERATIVE
Al & LLM

Generative Al Deep Dives,
Key concepts for Transformers - Part 1

POST 14 - GEN Al

GENERATIVE Al
FOR ALL

[DINESHLAL DINESH LAL

(DIRECTOR, DATA SCIENCE)

. WHAT IS COVERED IN THIS DOCUMENT?

« This document explains one of the
important basic term, essential for any
Generative Al solutions, i.e. Tokens

« The document first defines Tokens and
Tokenization

« Then it explains various types of
Tokenization

« Next the document delves into various
methods of Tokenization, and how it is
done, with the help of examples.

[DINESHLAL

' DEFINITION

Tokens:

- Tokens are the smallest units of text
that the transformer-based model
processes.

« They act as the building blocks for the
model to understand the meaning of a
sentence.

« For example, in the sentence “This

mountain is tall” the tokens are:
[“This”, “Mountain”, “is", “tall"].

[DINESHLAL

' DEFINITION

Tokenization:

« Tokenization is the process of
breaking down raw text into tokens.

- Before feeding text data into a
transformer based model, it needs to
be broken down into smaller, machine-
readable units. This process is called
tokenization.

« It involves splitting sentences into
individual words or subword units

[DINESHLAL

' TYPES OF TOKENIZATION

Word based tokenization:

« Description: Word-based tokenization
splits the text into tokens based on
word boundaries. Each token
corresponds to a complete word in the

text.

Input Text: "The quick brown fox jumps
over the lazy dog."

Tokens: ["The", "quick”, "brown", "fox",

Iljumpsll, IIOVerII, llthell' lllazyll' lldogll' ll.lI]

[DINESHLAL

. TYPES OF TOKENIZATION

Word based tokenization:

Advantages Disadvantages

e Straightforward and e May not handle out-
intuitive. of-vocabulary words
. Preserves the well.
semantic meaning of e Can be challenging for
individual words. languages with

complex morphology.

[DINESHLAL

' TYPES OF TOKENIZATION

Sub-word based tokenization:

« Description: Subword-based tokenization splits the
text into smaller subword units, which may or may
not correspond to complete words.

« This approach is particularly useful for handling out-
of-vocabulary words and morphologically rich

languages.

INPUT TEXT: "UNHAPPINESS™
TOKENS: ["UN", "HAPPI", "NESS"]

[DINESHLAL

. TYPES OF TOKENIZATION

Sub-word based tokenization:

Advantages Disadvantages

. Handles out-of- e Increases vocabulary
vocabulary words size, leading to longer
effectively. training times.
. Adaptable to . May produce
languages with suboptimal
complex morphology. tokenizations for

certain words.

[DINESHLAL

' TYPES OF TOKENIZATION

Character-based tokenization:
« Character-based tokenization represents each
character in the text as a separate token.
« This approach is useful when dealing with languages
that do not have clearly defined word boundaries or
when handling text data at the character level.

INPUT TEXT: "HELLO"
TOKENS: [IIHII' llEll' llLll' IILII' "0"]

[DINESHLAL

. TYPES OF TOKENIZATION

Character-based tokenization:

Advantages Disadvantages

e Preserves information e Can result in larger
at the character level. input sequences
. Handles languages compared to word-
with complex scripts based tokenization.
or character-based . May not capture
languages effectively. higher-level semantic

information present in

words.

[DINESHLAL

' TYPES OF TOKENIZATION

Sentence-based tokenization:
« Description: Sentence-based tokenization splits the
text into tokens based on sentence boundaries.

« Each token corresponds to a complete sentence in
the text.

INPUT TEXT: "HELLO, HOW ARE YOU? I'M
DOING WELL."

TOKENS: ["HELLO, HOW ARE YOU?", "I'M
DOING WELL."]

[DINESHLAL

. TYPES OF TOKENIZATION

Sentence-based tokenization:

Advantages Disadvantages

e Useful for tasks that e Requires a reliable
operate at the sentence segmentation
sentence level. algorithm.

e Preserves sentence e May not be suitable

boundaries, which can for languages with
be important for flexible sentence
certain applications. structures.

[DINESHLAL

. TOKENIZATION METHODS @

WordPiece Tokenization:

« WordPiece tokenization merges the most frequent
word pieces or subword units to create a vocabulary
of tokens.

Token Generation:
. Initialize the vocabulary with individual characters
and a special end-of-word marker.
« Compute the frequency of each word piece or
subword unit in the training data.
« Merge the most frequent word pieces iteratively
until a predefined vocabulary size is reached.

« Tokenize input text using the generated vocabulary.
¥ =
\/—_/
QO

[DINESHLAL

' TOKENIZATION METHODS

WordPiece Tokenization (Explained with an example):

« Example Sentence:
"The quick brown fox jumps over the lazy dog."

« Step 1:Initialize Vocabulary: The initial vocabulary
consists of individual characters and a special end-
of-word marker.

Initial Vocabulary:
(“T*, “h"*, "e"*, " ", "q", "u", "i", "c", "k", "b", "r",

O . W . "n"’ "f", "X", J . IIm , p , S . V"’ "t",

. a . Z", IIyIII "d"’ "g", II.II]

[DINESHLAL

. TOKENIZATION METHODS

WordPiece Tokenization (Explained with an example):

« Step 2: Merge Word Pieces: Merge the most
frequent word pieces iteratively to create subword
units. Here, we'll illustrate a simplified example with
a few merge operations:

1.Merge "e" + "r" = "er”

2.Merge "e" + "n" = "en"

3.Merge "o" + "v" = "ov"

4.Merge "I" + "a" — "la"

These merge operations are performed iteratively
based on the frequency of word pieces until a
predefined vocabulary size is reached.

[DINESHLAL

. TOKENIZATION METHODS

WordPiece Tokenization (Explained with an example):

« Step 3: Tokenization: Tokenize the input text using
the generated subword vocabulary. Each token
corresponds to a subword unit.

Subword Tokens:
[IIThelll "qUiCk", "brown"’ "fOX", ||jumpslll Ilover"’
"the", |I|azylll "dog", II.II]

In the subword tokens, each token represents a merged
subword unit generated by WordPiece tokenization.
These subword tokens capture meaningful linguistic
units in the input text while allowing for flexibility and
adaptability to different word formations and
languages.

[DINESHLAL

. TOKENIZATION METHODS @

Byte-level Byte Pair Encoding (BBPE):

- BBPE Byte-level Byte Pair Encoding (BBPE) operates
at the byte level and preserves Dbyte-level
information, making it suitable for handling
multilingual text and preserving byte-level
information such as special characters or byte-level
encoding schemes.

Token Generation:
« Represent each character in the input text using its
byte-level encoding.
« Merge the most frequent byte pairs iteratively to
create subword units.
« Tokenize input text using the generated subword
vocabulary.

[DINESHLAL

. TOKENIZATION METHODS

Byte-level Byte Pair Encoding (BBPE)(Explained with
an example):

« Example Sentence:

"The quick brown fox jumps over the lazy dog."

« Step 1:Byte-level Representation: Each character in
the input sentence is represented using its byte-

level encoding. For simplicity, let's consider ASCII
encoding for English characters.

Byte-level Representation:["T", "h", "e", " ", "q", "u",
it e, "k, b, e, Mo, twt, e, Y, "o,
', "ut, "mt, e, s, Y, "o, v, e, et
Mt tht, e,), a2ty Y, tdt, "o,
‘gt "l

[DINESHLAL

. TOKENIZATION METHODS

Byte-level Byte Pair Encoding (BBPE)(Explained with
an example):
« Step 3: Tokenize the input text using the generated
subword vocabulary. Each token corresponds to a

subword unit.

Subword Tokens:

[IITheIII "_qUiCk"’ "_brown"’ "_fOX"I II_jumpSIII
II_OverII’ "_the"’ Il_lazylll "_dog"’ II.II]
In the subword tokens, "_" represents the space

character, and the remaining tokens are the merged
subword units generated by BBPE. These subword
tokens capture meaningful linguistic units in the input
text while preserving byte-level information and
supporting multilingual text processing.

[DINESHLAL

. TOKENIZATION METHODS @

Unigram Language Model Tokenization:
« Unigram Language Model tokenization treats each
token as a separate word and computes the
likelihood of different subword units wusing a
unigram language model.

Token Generation:

e Initialize the vocabulary with individual words.

« Compute the likelihood of different subword units
using a unigram language model trained on the
input text data.

« Tokenize input text using the generated vocabulary.

[DINESHLAL

' TOKENIZATION METHODS

Unigram Language Model Tokenization (Explained
with an example):

« Example Sentence:
"The quick brown fox jumps over the lazy dog."

« Step 1:Initialize Vocabulary: The initial vocabulary
consists of individual words in the input text.
Initial Vocabulary:
["The", "quick", "brown", "fox", "jumps", "over",
"the", "lazy", "dog", "."]

[DINESHLAL

. TOKENIZATION METHODS

Unigram Language Model Tokenization (Explained
with an example):

« Step 2: Compute the likelihood of different
subword units using a unigram language model
trained on the input text data. In this simplified
example, we'll illustrate the likelihoods of a few

subword units:

."qu" - likelihood: 0.4
Mick" - likelihood: 0.6
br" - likelihood: 0.3
M"own" - likelihood: 0.5
M"fox" - likelihood: 0.7

a B~ W NN -

These likelihoods are based on the frequency of
subword units observed in the training data.

[DINESHLAL

. TOKENIZATION METHODS

Unigram Language Model Tokenization (Explained

with an example):
Step 3: Tokenization: Tokenize the input text using the

generated subword vocabulary. Each token corresponds
to a subword unit with a likelihood score.

Subword Tokens:
[IITheIII "qUiCk", "brown", Ilfoxlll IIjumpSIII Ilover",
"the", Illazy", "dog", II.II]

In the subword tokens, each token represents a subword
unit selected based on its likelihood score computed
from the unigram language model. These subword
tokens capture meaningful linguistic units in the input
text while providing flexibility and adaptability to
different word formations and languages.

[DINESHLAL

THhark Ype

SPECIAL THANKS TO GHATGPT, OPEN Al, COPILOT
FOR THE SUPPORT ON GONTENT

)

