
DINESHLAL

10 QUESTIONS
on “Feature
Engineering” for Data
Science and AI
Interviews

Interview 
Guide



Explanation:
Feature engineering involves creating new features or
modifying existing ones from raw data to improve the
performance of machine learning models. It’s a critical
step because the quality and relevance of features directly
impact how well the model can learn patterns in the data.

Detailed Explanation:
Definition: Feature engineering is the process of
transforming raw data into meaningful features that
represent the problem better to the machine learning
model.
Why it is important:
Improves model accuracy: Well-designed features help
models find patterns more easily, leading to better
predictions.
Makes data more understandable for the model: Raw
data may have noise or unstructured formats, which
need cleaning or restructuring.
Handles missing data: Feature engineering can help
deal with missing data by creating new variables that
either impute values or flag missing data.
Reduces computational complexity: Fewer, well-
designed features help reduce the model's complexity,
making it easier to train and faster to predict.

Example:
Converting a date column into useful features such as
"year", "month", and "day of the week" to help the model
understand time-related patterns.

01
What is Feature Engineering
in Data Science, and why is it
important?



02
What are some common
techniques used in Feature
Engineering?
Easy Explanation:
Several techniques are commonly used in feature engineering
to manipulate data and make it easier for machine learning
models to process. These techniques help in converting raw
data into meaningful information, reducing noise, and making
models more efficient.

Details:
Binning/Discretization: Dividing continuous variables into
discrete intervals or categories.

Example: Grouping ages into bins like "0-18", "19-35", and
"36-60" instead of using exact age.

Normalization/Standardization: Scaling numerical data so
that it has a mean of 0 and a standard deviation of 1
(standardization) or adjusting the range of values
(normalization).

Example: Scaling income data so that it ranges between
0 and 1, making sure features with larger ranges don’t
dominate the model.

One-Hot Encoding: Converting categorical variables into a
series of binary (0/1) variables.

Example: For a color feature with values "red", "blue",
"green", one-hot encoding would create three new
binary columns, one for each color.

Polynomial Features: Creating new features based on
polynomial combinations of existing features.

Example: If you have features "x" and "y", you can create
new features like x2x^2x2, xyxyxy, and y2y^2y2 to
capture more complex relationships.

Log Transformation: Applying logarithmic scaling to
skewed data to reduce the effect of outliers and make
distributions more normal.

Example: Transforming income data, where a few
extreme values dominate, by taking the log of income to
compress the range.



Easy Explanation: 
Feature selection involves choosing only the most important
features from a dataset. This reduces the complexity of the model
and helps in preventing overfitting, making the model easier to
interpret and more efficient.

Details:
Definition: Feature selection is the process of reducing the
input variables to only those that have the most predictive
power or are most relevant to the problem at hand.
Why it's important:
Avoids overfitting: Too many features can make the model
memorize the training data rather than generalize well to
new data.
Improves model performance: Focusing only on relevant
features allows the model to learn patterns more efficiently.
Reduces complexity: Fewer features mean faster training
times and easier interpretability of the model’s predictions.
Methods:
Filter Methods: Use statistical techniques (like correlation) to
select features before training.
Wrapper Methods: Select subsets of features based on model
performance (e.g., recursive feature elimination).
Embedded Methods: Feature selection happens during
model training (e.g., Lasso Regression uses regularization to
select features).

Example:
In a housing price prediction problem, features like the number
of bedrooms and the square footage might be more relevant,
while features like the house's street name may be irrelevant.

03
What is Feature Selection,
and why is it important in
machine learning?



04
Can you explain the
difference between Feature
Engineering and Feature
Selection?
Easy Explanation: Feature engineering and feature
selection are two distinct but related processes in
preparing data for machine learning models.
Understanding their differences is key to efficient
model building.

Details:
Feature Engineering:
What it does: Involves creating new features or
transforming existing features to make data more
useful for the model.
Goal: Improve the model’s understanding by
adding or enhancing features that better
represent the data.
Example: From a timestamp, creating new
features like "month", "day of the week", or "hour of
the day".
Feature Selection:
What it does: Focuses on reducing the number of
input features to retain only the most relevant
ones.
Goal: Simplify the model by selecting the most
important features that influence predictions.
Example: Using correlation analysis to remove
highly correlated or irrelevant features.



Easy Explanation:
Wrapper methods use a machine learning model to
evaluate feature subsets. These methods search for the
best combination of features by training models on
different subsets and measuring their performance.

Detailed Explanation:
Definition: Wrapper methods are feature selection
techniques where a model is trained on different
subsets of the data, and performance is measured to
select the best subset.
How it works:

Step 1: Create different combinations of features.
Step 2: Train a model on each combination and
evaluate its performance (e.g., using cross-
validation).
Step 3: Select the combination of features that
leads to the best model performance.

Advantages:
Can capture feature interactions that filter methods
may miss.
Results in better model performance but at a
higher computational cost.

Examples:
Recursive Feature Elimination (RFE): Trains a
model, removes the least important feature, and
repeats until the optimal feature set is found.
Forward Selection: Starts with no features, adds
them one by one, and keeps the ones that improve
model performance.

05 What are Wrapper Methods in
Feature Selection, and how do
they work?



06 Can you explain the
difference between Feature
Engineering and Feature
Selection?
Easy Explanation: One-hot encoding is used to
transform categorical variables into a format that
machine learning models can work with, especially
models that expect numerical input.

Details:
Definition: One-hot encoding transforms
categorical variables into a set of binary columns,
each representing one possible category.
When to use:

When you have categorical variables with no
inherent order (e.g., colors, cities).
It is especially useful for algorithms like logistic
regression and neural networks, which require
numerical input.

How it works:
Each unique category in the feature gets its
own binary (0 or 1) column.
The value 1 represents the presence of that
category, and 0 represents its absence.

Example:
For a feature "Color" with values like "Red", "Blue",
and "Green", one-hot encoding would create three
new columns: "Color_Red", "Color_Blue", and
"Color_Green". If the original row had the value
"Red", it would become [1, 0, 0].



Easy Explanation:
Feature engineering can be a complex task, especially in
real-world datasets where data may be noisy, incomplete,
or unstructured. The process requires domain knowledge
and experimentation to create features that improve
model performance.

Detailed Explanation:
Challenges:
Handling missing data: Deciding how to deal with
missing values without introducing bias.
Scaling and normalization: Ensuring that features are
on the same scale, especially when using algorithms
sensitive to the scale of input data.
High dimensionality: Having too many features can
lead to overfitting and computational challenges.
Domain knowledge: Creating relevant features often
requires a deep understanding of the domain in which
the problem exists.
Feature interaction: Understanding how different
features interact and combining them effectively can
be difficult.

Example:
In a financial dataset, you might need to create features
like "debt-to-income ratio", which requires knowledge of
finance to interpret properly.

07 What are some challenges in
Feature Engineering?



08 How would you handle high
cardinality categorical
variables?
Easy Explanation: High cardinality refers to categorical
variables with many unique values, which can lead to problems
in model training if not handled correctly. Special techniques
are needed to reduce the number of unique categories or
represent them efficiently.

Details:
Challenges of high cardinality:

Leads to a large number of features after one-hot
encoding.
Increases computational cost and may result in
overfitting.

Solutions:
Frequency Encoding: Replacing categories with their
frequency of occurrence.

Example: Replacing each city with the number
Target Encoding: Replacing categories with the mean of
the target variable for that category.

Example: For a binary classification problem, if "New
York" has a 60% chance of being in class 1 and "Los
Angeles" has a 40% chance, you replace these
categories with 0.6 and 0.4 respectively.

Group Rare Categories: Combining less frequent
categories into a single "Other" category.

Example: If some cities appear very infrequently, they
can be grouped into one category labeled "Other" to
avoid having too many distinct categories.

Example:
A dataset with a "Country" variable containing hundreds of
unique country names may use frequency encoding or
combine rare countries into a group to avoid creating a
huge number of features.



Easy Explanation:
Missing data is a common issue in real-world datasets and can
significantly impact the performance of a machine learning model if
not handled correctly. Several techniques can be used to manage
missing values without introducing bias or reducing data quality.

Detailed Explanation:
Approaches to handle missing data:
Remove missing data: If only a small percentage of rows or
columns have missing values, they can be removed.
Example: If 5% of rows in a dataset are missing values for a certain
feature, you might remove those rows without significantly
affecting the analysis.
Imputation: Filling in missing values with a substitute.
Mean/Median Imputation: For numerical data, replacing missing
values with the mean or median.
Example: In a dataset with customer ages, if some entries are
missing, you can replace them with the average age.
Mode Imputation: For categorical data, replacing missing values
with the most frequent category.
Example: If the "Gender" feature is missing in some rows, you
could replace those with the most common gender in the dataset.
Predictive Imputation: Using other features to predict the missing
values (e.g., using a regression model to predict missing values).
Flagging missing data: Creating a new feature that indicates
whether a value was missing.
Example: For a column like "salary", if some values are missing,
create a new binary feature "salary_missing" with 1 indicating a
missing value and 0 otherwise.

Example:
 In a dataset of house prices, if the "number of bedrooms" is missing
in some rows, you could replace the missing values with the median
number of bedrooms for similar houses in the same location.

09 How would you handle missing
data during Feature Engineering?



10 What role does domain
knowledge play in Feature
Engineering?
Easy Explanation: Feature engineering is not just a technical
process—it often requires a deep understanding of the domain
in which the problem exists. Domain knowledge helps in
identifying meaningful features and deciding how to transform
the data for better model performance.

Details:
Importance of domain knowledge:
Creating relevant features: Domain experts can identify
which features are likely to influence the outcome.
Example: In finance, domain knowledge might help in
creating features like "debt-to-income ratio" or "credit
utilization".
Identifying feature interactions: Domain knowledge helps in
understanding how certain variables interact and how to
combine them.
Example: In healthcare, domain knowledge might indicate
that "age" and "blood pressure" should be combined into a
new feature to better predict heart disease risk.
Avoiding irrelevant features: Domain experts can help avoid
using features that are irrelevant or misleading.
Example: In predicting house prices, domain knowledge
might tell you that "house number" is irrelevant and
shouldn’t be included in the model.
Guiding missing data handling: Knowledge of the domain
can suggest appropriate strategies for handling missing
data.
Example: In medical datasets, missing values might indicate
a specific condition or absence of a symptom, which domain
experts can flag as important information.

Example:
In a marketing dataset, domain knowledge could suggest
that the "number of customer purchases" during holiday
seasons is a more important feature than just looking at the
total number of purchases over the year



FOLLOW ALONG

For learning more on
Data Science, AI and
Generative AI

Dinesh Lal


