
DINESHLAL

20 QUESTIONS
on “Decision Tree” for
Data Science and AI
Interviews

Interview 
Guide



Explanation:
A Decision Tree is a flowchart-like structure used
for decision-making in machine learning. It
visually resembles an upside-down tree with
branches, nodes, and leaves. 
Each internal node represents a test on an
attribute or feature of the data, each branch
represents the outcome of the test, and each leaf
node represents a class label (for classification) or
a prediction value (for regression). This structure
allows the tree to partition data into subsets
based on the features, ultimately leading to a
decision or prediction.

Detailed Explanation:
It is a versatile supervised machine learning
algorithm used
 for both classification and regression tasks. The
tree structure effectively splits data into subsets
based on the values of different features, making
decisions at each step based on the outcome of
the tests at the nodes. 
For instance, if you're building a Decision Tree to
predict whether someone will play tennis, a
decision node could be "Is it sunny?" with
branches for "Yes" and "No," leading to further
nodes based on other features like humidity or
wind speed. 
This process continues until a prediction (play or
not play) is reached at a leaf node.

01 What is a Decision Tree?



Easy Explanation:
The components of a Decision Tree define its
structure and how it navigates through the data to
reach a decision. Understanding these components is
crucial for interpreting and building Decision Trees.
They work together to form a hierarchical structure
that guides the decision-making process based on the
features of the data.

Details:
Root Node: The topmost node in the tree,
representing the entire dataset before any splits
are made. It's the starting point for the decision-
making process.
Decision Nodes: These are intermediate nodes
where the data is split based on a specific feature.
Each decision node evaluates a condition and
directs the flow of data down different branches
based on the outcome.
Leaf Nodes: Terminal nodes that represent the
final outcome or decision. In a classification tree,
leaf nodes represent class labels, while in a
regression tree, they hold prediction values.
Branches: Connections between nodes that
represent the outcomes of the tests at decision
nodes. Each branch corresponds to a possible
value or range of values for the feature being
evaluated.

02 What are the components
of a Decision Tree?



Easy Explanation: 
A Decision Tree algorithm employs a recursive
partitioning approach to split the data into increasingly
homogeneous subsets. This process starts with the
entire dataset at the root node and continues until a
stopping criterion is met, such as reaching a maximum
depth or having a minimum number of samples in a
leaf. 

Details:
Start at the root node: The algorithm begins with
the entire dataset at the root node.
Split the data: It selects a feature and a split point
that best separates the data into subsets with
similar target variable values. This selection is based
on criteria like information gain (for classification) or
variance reduction (for regression).
Repeat recursively: The algorithm repeats the
splitting process for each resulting subset, creating
child nodes. This continues until a stopping
condition is met, such as a maximum tree depth, a
minimum number of samples per leaf, or no further
information gain can be achieved.
Assign predictions: Once the tree construction is
complete, each leaf node is assigned a prediction
value (for regression) or a class label (for
classification) based on the majority class or average
value of the data points in that leaf.

03 How does a Decision Tree
algorithm work?



Easy Explanation: Gini Impurity and Entropy are
metrics used in classification trees to measure
the impurity or disorder of a set of data. They
help in determining the best split at each
decision node by quantifying how mixed the
classes are within a node. A lower impurity value
indicates a purer node with a higher
concentration of a single class.

Details:
Gini Impurity: Measures the probability of
misclassifying a randomly chosen element
from the set. It ranges from 0 (pure node with
only one class) to 1 (maximum impurity with
equal representation of all classes). The
formula for Gini Impurity is: 1 - Σ(pi)^2, where
pi is the probability of an element belonging
to class i.
Entropy: Measures the uncertainty or
randomness in a dataset. A higher entropy
value indicates more disorder or a greater mix
of classes. It ranges from 0 (pure node) to 1
(maximum uncertainty). The formula for
Entropy is: - Σ pi * log2(pi), where pi is the
probability of an element belonging to class i.

04 What are Gini Impurity and
Entropy?



Easy Explanation:
The best split in a Decision Tree is the one that
maximizes the homogeneity of the resulting
subsets. This means that the split should result in
child nodes that have a higher concentration of a
single class (for classification) or lower variance in
the target variable (for regression). The process
involves evaluating different features and split points
to find the one that leads to the greatest
improvement in impurity or variance.

Detailed Explanation:
Calculate impurity: Calculate the impurity (Gini
or Entropy) of the parent node before the split.
Calculate impurity after split: For each potential
feature and split point, calculate the weighted
average impurity of the child nodes that would
result from the split.
Compute Information Gain: Information Gain
measures the reduction in impurity achieved by
the split. It's calculated as: Information Gain =
Impurity(Parent) - Weighted Impurity(Children).
Choose the best split: Select the feature and
split point that results in the highest Information
Gain. This split maximizes the separation
between classes or reduces the variance in the
target variable most effectively.

05 How is the best split determined
in a Decision Tree?



06 What is Overfitting in
Decision Trees?
Easy Explanation: Overfitting in Decision Trees occurs
when the tree becomes too complex and learns the
training data too well, including its noise and outliers.
This leads to a tree that performs exceptionally well on
the training data but fails to generalize to unseen data.
An overfit tree essentially memorizes the training data
instead of learning the underlying patterns, resulting in
poor performance on new data. 

Details:
Signs of overfitting:

Tree is too deep: An excessively deep tree with
many nodes and branches is a common indicator
of overfitting.
Good performance on training data, poor
performance on test data: A significant difference
in performance between the training and test
data suggests that the tree is overfitting the
training data and failing to generalize.

Solutions to prevent overfitting:
Pruning: Removing unnecessary branches or
nodes from the tree to simplify it.
Setting a maximum depth: Limiting the depth of
the tree to prevent it from becoming too complex.
Minimum samples per leaf: Setting a minimum
number of samples required to create a leaf node,
preventing the tree from creating leaves with very
few data points.



Easy Explanation:
Preventing overfitting is crucial for building a Decision
Tree that generalizes well to new data. Several
techniques can be employed to control the complexity
of the tree and avoid capturing noise in the training
data. These techniques aim to simplify the tree
structure or limit its growth, ensuring that it learns the
underlying patterns in the data without memorizing
specific instances.

Detailed Explanation:
Pre-pruning: Stopping the growth of the tree early
before it becomes too complex. This can be done by
setting limits on the maximum depth of the tree,
the minimum number of samples required to split a
node, or the minimum impurity reduction required
for a split.
Post-pruning: Building the full tree and then
removing or collapsing nodes that do not
significantly contribute to the predictive power of
the tree. This involves techniques like cost-
complexity pruning, where a cost is assigned to
each node based on its complexity and error rate.
Regularization: Adding a penalty term to the
objective function used to grow the tree. This
penalty discourages the tree from becoming too
complex by penalizing trees with a large number of
nodes or branches.

07 How can you prevent overfitting
in Decision Trees?



08 What are the advantages of
using Decision Trees?
Easy Explanation: Decision Trees offer several
advantages that make them a popular choice for
various machine-learning tasks. Their simplicity,
interpretability, and ability to handle different data
types contribute to their wide applicability. They are
particularly useful in situations where understanding
the decision-making process is important.

Details:
Easy to understand and visualize: The tree-like
structure of Decision Trees makes them easy to
interpret and explain, even to non-technical
audiences. The decision rules can be easily
extracted and visualized.
Handles both numerical and categorical data:
Decision Trees can handle both numerical and
categorical features without requiring extensive
data preprocessing. This makes them versatile for
a wide range of datasets.
Requires little data preprocessing: Unlike some
other algorithms, Decision Trees don't require data
normalization or scaling, making them less
demanding in terms of data preparation.
Non-parametric: Decision Trees make no
assumptions about the underlying data
distribution, making them suitable for various data
types and relationships.



Easy Explanation:
While Decision Trees offer several advantages,
they also have limitations that can affect their
performance and applicability. These limitations
primarily stem from their tendency to overfit the
training data and their sensitivity to small changes
in the data.

Detailed Explanation:
Prone to overfitting: Decision Trees can easily
become complex and overfit the training data,
leading to poor generalization performance on
unseen data.
Can be unstable: Small variations in the data
can lead to different tree structures, making
them somewhat unstable. This instability can
affect the consistency of predictions.
Greedy approach: The algorithm uses a
greedy approach to select the best split at
each node, which may not always lead to the
globally optimal tree.
Bias towards features with many categories:
Decision Trees tend to favor features with
many categories, which can sometimes lead to
biased results.

09 What are the disadvantages of
Decision Trees?



10 What is Pruning in Decision
Trees?
Easy Explanation: Pruning is a technique used to
reduce the size of a Decision Tree by removing
branches or nodes that do not contribute
significantly to the predictive accuracy of the tree.
This helps to prevent overfitting and improve the
generalization performance of the tree on unseen
data. Pruning essentially simplifies the tree by
eliminating unnecessary complexity.

Details:
Pre-pruning: Stopping the growth of the tree
early based on certain criteria, such as a
maximum depth, a minimum number of
samples per leaf, or a minimum improvement in
impurity. This prevents the tree from becoming
too complex in the first place.

Post-pruning: Growing the full tree and then
removing or collapsing nodes that do not add
significant predictive power. This involves
techniques like cost-complexity pruning, which
assigns a cost to each node based on its
complexity and error rate. Nodes with a high
cost and low contribution to accuracy are
pruned.



Easy Explanation:
Maximum Depth is a hyperparameter in Decision
Trees that limits the depth of the tree, which is the
length of the longest path from the root node to a
leaf node. Controlling the maximum depth helps to
prevent overfitting by restricting the complexity of
the tree. It's a way to balance between underfitting
(too shallow a tree) and overfitting (too deep a tree).

Detailed Explanation:
Prevents overfitting: By limiting the depth, the
tree is prevented from growing too deep and
capturing noise or specific details of the training
data that may not generalize well.
Impacts model complexity: A shallow tree (low
max depth) is simpler and may underfit the data
by not capturing the underlying patterns
sufficiently. A deep tree (high max depth) is more
complex and may overfit the data by capturing
noise and outliers.
Tuning is crucial: Finding the optimal maximum
depth is crucial and often involves
experimentation and tuning to find the right
balance between underfitting and overfitting for
a specific dataset.

11 What is the role of Maximum Depth
in Decision Trees?



12 How do Decision Trees
handle missing values?
Easy Explanation: Missing values in the data can
pose a challenge for Decision Trees as they can
disrupt the splitting process. However, Decision
Tree algorithms have strategies to handle
missing data, allowing them to build trees even
with incomplete datasets. These strategies aim
to minimize the impact of missing values on the
tree construction and prediction process.

Details:
Surrogate splits: Identify alternative features
that are highly correlated with the feature
with missing values. These surrogate features
are used to split the data when the primary
feature has missing values.
Imputation with common value or mean:
Replace missing values with the most
frequent value (for categorical features) or the
mean/median value (for numerical features).
This allows the data point to be included in
the tree construction.
Assign to a separate branch: Some
algorithms assign data points with missing
values to a separate branch, allowing them to
contribute to the tree without influencing the
split based on the missing feature.



Easy Explanation:
Feature Importance in Decision Trees quantifies
how much each feature contributes to the
predictive power of the tree. It helps in
understanding which features are most influential
in making decisions or predictions. This
information can be valuable for feature selection,
identifying important variables, and gaining
insights into the data.

Detailed Explanation:
Based on impurity reduction: Feature
importance is typically calculated based on the
total reduction in impurity (Gini or Entropy)
achieved by splits using that feature. Features
that result in larger impurity reductions are
considered more important.
Normalized values: Feature importance
values are often normalized to sum up to 1,
making it easier to compare the relative
importance of different features.
Useful for feature selection: Feature
importance scores can be used to select the
most relevant features for other machine
learning models, improving their efficiency
and performance.

13 What is Feature Importance in
Decision Trees?



14
What is the difference
between Classification and
Regression Trees?
Easy Explanation: While both Classification and
Regression Trees share the same basic tree structure,
they differ in their objective and the type of output
they produce. Classification Trees are used to predict
categorical outcomes (class labels), while Regression
Trees predict continuous values. This difference
influences the splitting criteria and the values
assigned to leaf nodes.

Details:
Classification Trees:

Output: Predict discrete class labels (e.g., "Yes"
or "No", "Red", "Green", "Blue").
Splitting criteria: Use impurity measures like
Gini Impurity or Entropy to determine the best
splits.
Leaf node values: Each leaf node is assigned
the class label that is most frequent among the
data points in that leaf.

Regression Trees:
Output: Predict continuous values (e.g., price,
temperature, age).
Splitting criteria: Use measures like Mean
Squared Error (MSE) or Mean Absolute Error
(MAE) to minimize the variance within each
leaf.
Leaf node values: Each leaf node is assigned
the average or median value of the target
variable for the data points in that leaf.



Easy Explanation:
A Random Forest is an ensemble learning method that
combines multiple Decision Trees to improve
predictive accuracy and reduce overfitting. It builds a
collection of Decision Trees and aggregates their
predictions to make a final decision. This ensemble
approach leverages the wisdom of the crowd, where
the combined knowledge of multiple trees is more
robust than a single tree.

Detailed Explanation:
Ensemble method: Random Forest is an ensemble
method that constructs multiple Decision Trees
during training and outputs the average prediction
(for regression) or the mode of the classes (for
classification) of the individual trees.
Bagging (Bootstrap Aggregation): Random Forest
uses bagging, where each tree is trained on a
random subset of the data (with replacement). This
creates diversity among the trees.
Random feature selection: At each node, a random
subset of features is considered for splitting, further
increasing the diversity and reducing correlation
among the trees.
Reduces overfitting: By combining multiple trees,
Random Forest reduces overfitting and improves
generalization compared to a single Decision Tree.

15 What is a Random Forest, and
how does it relate to Decision
Trees?



16 When should you use
Decision Trees?
Easy Explanation: Decision Trees are a suitable
choice for various machine learning scenarios due
to their versatility and interpretability. They are
particularly well-suited for problems where
understanding the decision-making process and
the relationships between features is important.

Details:
Interpretability is crucial: When you need a
model that is easy to understand and explain to
stakeholders, Decision Trees provide a clear
visual representation of the decision rules.
Mixed feature types: Decision Trees can handle
datasets with a mix of numerical and
categorical features without requiring extensive
preprocessing.
Non-linear relationships: Decision Trees can
capture non-linear relationships between
features, making them suitable for problems
where the relationship between the predictors
and the target variable is not linear. 
Feature selection: Decision Trees can be used
for feature selection by identifying the most
important features based on their contribution
to the tree's predictive power.



Easy Explanation:
Yes, Decision Trees can effectively handle
categorical features. They can directly use
categorical variables without requiring one-hot
encoding or other transformations, making them
convenient for datasets with categorical data. The
splits in the tree are based on the different
categories of the feature.

Detailed Explanation:
Directly usable: Decision Trees can directly
use categorical features in the splitting
process.
Splits based on categories: The tree creates
branches for each category of the categorical
feature, partitioning the data based on the
category values.
Encoding may be needed: While Decision
Trees can inherently handle categorical
features, some implementations may require
encoding (like one-hot encoding) depending
on the specific software or library used.

17 Can Decision Trees handle
categorical features?



18
How do Decision Trees
compare to Logistic
Regression?
Easy Explanation: Both Decision Trees and Logistic
Regression are popular algorithms for classification
tasks, but they differ in their approach and
capabilities. Decision Trees create non-linear decision
boundaries, while Logistic Regression creates linear
decision boundaries. This difference influences their
suitability for different types of datasets and problems.

Details:
Decision Trees:

Non-linear decision boundaries: Can capture
complex non-linear relationships between
features.
Easier to interpret: The tree structure provides a
visual representation of the decision rules.
Prone to overfitting: Requires careful tuning to
prevent overfitting.

Logistic Regression:
Linear decision boundaries: Creates a linear
separation between classes.
Better for linear relationships: More suitable for
datasets where the relationship between
features and the target variable is linear.
Less prone to overfitting: Generally more robust
to overfitting compared to Decision Trees.



Easy Explanation:
CART stands for Classification and Regression Trees. It's
a widely used algorithm for constructing Decision Trees
with a specific set of characteristics that distinguish it
from other Decision Tree algorithms. CART simplifies
the tree structure by restricting splits to binary
partitions and employs specific impurity measures for
classification and regression tasks.

Detailed Explanation:
Binary splits:

CART trees always create binary splits at each
decision node, resulting in a tree where each
node has exactly two child nodes. This simplifies
the tree structure and makes it easier to
interpret the decision rules.

Gini Impurity for classification:
CART uses Gini Impurity as the impurity
measure for classification tasks. Gini Impurity
measures the probability of misclassifying a
randomly chosen element from a set.

Mean Squared Error (MSE) for regression:
 For regression tasks, CART uses Mean Squared
Error (MSE) as the splitting criterion. MSE
measures the average squared difference
between the predicted and actual values.

19 What is CART?



20 Can Decision Trees be used
for Time Series Data?
Easy Explanation: While Decision Trees are not the most ideal
choice for time series data, they can be adapted to handle
temporal dependencies with some modifications. However,
specialized time series models or ensemble methods like
Random Forest or Gradient Boosting are generally preferred for
time series analysis due to their ability to better capture
temporal patterns.

Details:
Feature engineering:

To use Decision Trees for time series data, you need to
engineer features that capture the temporal
dependencies in the data. This might involve creating
lagged variables (previous values of the time series),
rolling statistics (moving averages or standard
deviations), or other time-related features.

Limitations:
Decision Trees may struggle to capture long-term
dependencies and complex seasonal patterns in time
series data. Their tendency to make abrupt splits can also
be problematic for smoothly varying time series.

Alternatives:
For time series analysis, models like ARIMA, Recurrent
Neural Networks (RNNs), or ensemble methods like
Random Forest or Gradient Boosting, which are
specifically designed to handle temporal data, are often
more suitable.

This expanded list should provide early-career professionals
with a more comprehensive understanding of Decision
Trees and help them prepare for interviews with detailed
explanations and examples. Remember to focus on
understanding the core concepts and relating them to
practical applications.



FOLLOW ALONG

For learning more on
Data Science, AI and
Generative AI

Dinesh Lal


