
DINESHLAL

P O S T 4 5 - G E N A I

A Step by Step Guide

Your First
Generative AI Model

GENERAT IVE A I
FOR ALL

DINESHLAL

Generative AI is a rapidly
growing field that allows
computers to create new
content like text, images, and
music, much like humans do.
This guide offers a beginner-
friendly, step-by-step tutorial
to build your first generative AI
model.
We'll use popular libraries such
as TensorFlow, Keras, and
PyTorch. By the end, you'll
grasp the basics and have
built a simple model.

Introduction

DINESHLAL

Generative Adversarial Networks
(GANs): These are the focus of our
tutorial. They work by having two
neural networks compete: one
generates content, the other judges
its quality.
Variational Autoencoders (VAEs):
These models learn the underlying
structure of data to generate new,
similar data.
Transformers: Primarily used for text
and sequences, these models are
behind powerful language models
like GPT-3.

Key Generative AI
Models

DINESHLAL

Prerequisites

Programming Skills: Basic
understanding of Python is essential.
Frameworks and Libraries:

TensorFlow/Keras (or PyTorch)
- Deep learning frameworks.
NumPy - For numerical
operations.
Matplotlib - For data
visualization.

DINESHLAL

Prerequisites

Development Environment:
Python 3.8+ installed.
Jupyter Notebook or an IDE (e.g.,
PyCharm, VS Code).
Install necessary libraries using
pip: pip install tensorflow numpy
matplotlib

Dataset:
We'll use the MNIST dataset, a
classic collection of handwritten
digits (0-9). Think of it as the
"Hello, World!" of image data.

DINESHLAL

Understanding GANs1.
A GAN has two main parts:

Generator: This creates new
data instances, like images, that
resemble the training data.
Imagine it as an art forger trying
to create a masterpiece.
Discriminator: This acts like an
art expert, trying to distinguish
between real images from the
training set and fake ones
created by the generator.

Step-by-Step Guide to
Building Your First GAN

DINESHLAL

Understanding GANs1.
These two networks are in a
constant battle. The generator
tries to fool the discriminator,
while the discriminator tries to
catch the fakes. This "adversarial
training" is what makes GANs so
powerful.

Step-by-Step Guide to
Building Your First GAN

DINESHLAL

2. Import Required Libraries

Step-by-Step Guide to
Building Your First GAN

import tensorflow as tf
from tensorflow.keras.layers import
Dense, Reshape, Flatten, Dropout
from tensorflow.keras.models import
Sequential
import numpy as np
import matplotlib.pyplot as plt

DINESHLAL

3. Load the Dataset

This code loads the MNIST dataset and
preprocesses it. Normalizing the pixel
values to a range of -1 to 1 helps the
GAN train more effectively.

Step-by-Step Guide to
Building Your First GAN

Load MNIST dataset

(x_train, _), (_, _) =
tf.keras.datasets.mnist.load_data()

Normalize images to [-1, 1] range for
better GAN performance
x_train = x_train / 127.5 - 1.0 x_train =
x_train.reshape(-1, 28, 28, 1)
print(f"Dataset shape: {x_train.shape}")

DINESHLAL

4. Build the Generator
This code defines the generator
network. It takes a random noise vector
(of size 100) as input and uses dense
layers with ReLU activation to transform
it into a 28x28 image. The tanh
activation ensures the output is in the
desired range.

Step-by-Step Guide to
Building Your First GAN

def build_generator():
 model = Sequential()
 model.add(Dense(128, input_shape=(100,),
activation='relu'))
 model.add(Dense(784, activation='tanh'))
return model

Output size = 28x28=784
model.add(Reshape((28, 28, 1))) return
model generator = build_generator()
generator.summary()

DINESHLAL

5. Build the Discriminator
This code defines the discriminator. It
takes a 28x28 image as input, flattens it,
and uses dense layers to classify it as
real (output close to 1) or fake (output
close to 0).

Step-by-Step Guide to
Building Your First GAN

def build_discriminator():
 model = Sequential()
 model.add(Flatten(input_shape=(28, 28,
1)))
 model.add(Dense(128, activation='relu'))
 model.add(Dense(1,
activation='sigmoid'))
Output: Real (1) or Fake (0)
 return model

discriminator = build_discriminator()
discriminator.summary()

DINESHLAL

6. Compile the GAN Components
Here, we compile the discriminator with
the binary_crossentropy loss function
and the adam optimizer. We also
create the combined GAN model, where
the generator's output is fed into the
discriminator.

Step-by-Step Guide to
Building Your First GAN

Compile the discriminator

discriminator.compile(loss='binary_crosse
ntropy', optimizer='adam',
metrics=['accuracy'])

discriminator.trainable = False # Freeze
discriminator during generator training

DINESHLAL

6. Compile the GAN Components
Here, we compile the discriminator with
the binary_crossentropy loss function
and the adam optimizer. We also
create the combined GAN model, where
the generator's output is fed into the
discriminator.

Step-by-Step Guide to
Building Your First GAN

Build the GAN model
def build_gan(generator, discriminator):
 model = Sequential()
 model.add(generator)
 model.add(discriminator)
 return model

gan = build_gan(generator, discriminator)
gan.compile(loss='binary_crossentropy',
optimizer='adam')

DINESHLAL

7. Train the GAN

Step-by-Step Guide to
Building Your First GAN

def train_gan(generator, discriminator, gan, data,
epochs=10000, batch_size=128):
 half_batch = batch_size // 2

 for epoch in range(epochs):
 # Train Discriminator
 idx = np.random.randint(0, data.shape[0],
half_batch)
 real_images = data[idx]
 noise = np.random.normal(0, 1, (half_batch, 100))
 fake_images = generator.predict(noise)

 d_loss_real =
discriminator.train_on_batch(real_images,
np.ones((half_batch, 1)))
 d_loss_fake =
discriminator.train_on_batch(fake_images,
np.zeros((half_batch, 1)))
 d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

 # Train Generator
 noise = np.random.normal(0, 1, (batch_size, 100))
 g_loss = gan.train_on_batch(noise,
np.ones((batch_size, 1)))

 # Print progress
 if epoch % 1000 == 0:
 print (f"Epoch {epoch} | D Loss: {d_loss[0]} |
G Loss: {g_loss}")
 plot_generated_images(generator)

DINESHLAL

7. Train the GAN
This is the core training loop. In each
epoch, we:

Train the discriminator on a batch of
real and fake images.
Train the generator to fool the
discriminator.
Periodically print the progress and
visualize generated images.

Step-by-Step Guide to
Building Your First GAN

def plot_generated_images(generator):
 noise = np.random.normal(0, 1, (16, 100))
 generated_images = generator.predict(noise)
 generated_images = (generated_images + 1) / 2.0

 plt.figure(figsize=(4, 4))
 for i in range(16):
 plt.subplot(4, 4, i+1)
 plt.imshow(generated_images[i, :, :, 0],
cmap='gray')
 plt.axis('off')
 plt.show()

train_gan(generator, discriminator, gan, x_train)

DINESHLAL

8. Observe the Results
As the training progresses, you'll
notice the generated images
becoming more and more realistic.
Initially, they'll be random noise, but
gradually they'll start resembling
handwritten digits.

Step-by-Step Guide to
Building Your First GAN

Conclusion

You've now built your first generative
AI model using GANs! This tutorial
provided a practical introduction to
generative modeling in Python.

Next Steps:
Explore Advanced Architectures:
Dive into more complex GANs like
DCGANs (Deep Convolutional GANs)
and WGANs (Wasserstein GANs).
Generate Different Data: Try
generating color images, text, or
even music.

DINESHLAL

Conclusion

Next Steps:
Experiment with PyTorch:
Implement the same GAN using
another popular deep learning
framework.
Real-World Applications: Think
about how you can apply
generative AI to solve problems in
your field.

DINESHLAL

DINESHLAL

THANK YOU

Special thanks to Gemini and
ChatGPT for all the help on content
Follow along for more informative
articles in Generative AI space

