POST 45- GEN Al

GENERATIVE Al
FOR ALL

Your First
Generative Al Model

A Step by Step Guide

() DINESHLAL

Introduction

() DINESHLAL

Generative Al is a rapidly
growing field that allows
computers to create new
content like text, images, and
music, much like humans do.
This guide offers a beginner-
friendly, step-by-step tutorial
to build your first generative Al
model.

We'll use popular libraries such
as TensorFlow, Keras, and
PyTorch. By the end, youll
grasp the basics and have
built a simple model.

—

() DINESHLAL

Generative Adversarial Networks
(GANSs): These are the focus of our
tutorial. They work by having two
neural networks compete: one
generates content, the other judges
its quality.

Variational Autoencoders (VAEs):
These models learn the underlying
structure of data to generate new,
similar data.

Transformers: Primarily used for text
and sequences, these models are
behind powerful language models
like GPT-3.

Prerequisites

* Programming Skills: Basic
understanding of Python is essential.
* Frameworks and Libraries:
> TensorFlow[Keras (or PyTorch)
- Deep learning frameworks.

°© NumPy - For numerical
operations.
o Matplotlib — For data

visualization.

() DINESHLAL

Prerequisites

e Development Environment:

o Python 3.8+ installed.

o Jupyter Notebook or an IDE (e.g,,
PyCharm, VS Code).

o Install necessary libraries using
pip: pip install tensorflow numpy
matplotlib

 Dataset:

o We'll use the MNIST dataset, a
classic collection of handwritten
digits (0-9). Think of it as the
"Hello, World!" of image data.

() DINESHLAL

Step-by-Step Guide to

Building Your First GAN

l.Understanding GANs
* A GAN has two main parts:

() DINESHLAL

o Generator: This creates new

data instances, like images, that
resemble the training data.
Imagine it as an art forger trying
to create a masterpiece.

Discriminator: This acts like an
art expert, trying to distinguish
between real images from the
training set and fake ones
created by the generator.

Step-by-Step Guide to

Building Your First GAN

l.Understanding GANs

o These two networks are in a
constant battle. The generator
tries to fool the discriminator,
while the discriminator tries to
catch the fakes. This "adversarial
training” is what makes GANs so
powerful.

() DINESHLAL q

Step-by-Step Guide to

Building Your First GAN

2. Import Required Libraries

import tensorflow as tf

from tensorflow.
Dense, Reshape,
from tensorflow.
Sequential
import numpy as

<eras.layers 1import
Flatten, Dropout
<eras.models 1mport

np

import matplotlib.pyplot as plt

() DINESHLAL

Step-by-Step Guide to

Building Your First GAN

3. Load the Dataset

This code loads the MNIST dataset and
preprocesses it. Normalizing the pixel
values to a range of -1 to 1 helps the
GAN train more effectively.

Load MNIST dataset

(X_trainr _)r (_r _) =
tf.keras.datasets.mnist.load data()

Normalize images to [-1, 1] range for
better GAN performance

X_train = x_train / 127.5 - 1.0 x_train =
X_train.reshape(-1, 28, 28, 1)
print(f"Dataset shape: {x_train.shape}")

() DINESHLAL q

Step-by-Step Guide to

Building Your First GAN

4. Build the Generator

This code defines the generator
network. It takes a random noise vector
(of size 100) as input and uses dense
layers with RelLU activation to transform
it into a 28x28 image. The tanh
activation ensures the output is in the
desired range.

def build_generator():

model = Sequential()
model.add(Dense(128, input_shape=(100,),
activation="'relu'))

model.add(Dense(784, activation='tanh'))
return model

Output size = 28x28=784
model.add(Reshape((28, 28, 1))) return
model generator = build _generator()
generator.summary()

() DINESHLAL q

Step-by-Step Guide to

Building Your First GAN

5. Build the Discriminator

This code defines the discriminator. It
takes a 28x28 image as input, flattens it,
and uses dense layers to classify it as
real (output close to 1) or fake (output
close to 0).

def build discriminator():

model = Sequential()
model.add(Flatten(input_shape=(28, 28,
1)))

model.add(Dense(128, activation='relu'))
model.add(Dense(1,
activation="'sigmoid'))
Output: Real (1) or Fake (0)

return model

discriminator = build discriminator()
discriminator.summary()

() DINESHLAL q

Step-by-Step Guide to

Building Your First GAN

6. Compile the GAN Components

Here, we compile the discriminator with
the binary_crossentropy loss function
and the adam optimizer. We also
create the combined GAN model, where
the generator's output is fed into the
discriminator.

Compille the discriminator
discriminator.compile(loss="'binary_ crosse
ntropy', optimizer="'adam',

metrics=["'accuracy'])

discriminator.trainable = False # Freeze
discriminator during generator training

() DINESHLAL q

Step-by-Step Guide to

Building Your First GAN

6. Compile the GAN Components

Here, we compile the discriminator with
the binary_crossentropy loss function
and the adam optimizer. We also
create the combined GAN model, where
the generator's output is fed into the
discriminator.

Build the GAN model
def build_gan(generator, discriminator):
model = Sequential()
model.add(generator)
model.add(discriminator)

return model

gan = build _gan(generator, discriminator)
gan.compile(loss="binary_crossentropy',
optimizer="adam')

() DINESHLAL q

Step-by-Step Guide to

Building Your First GAN

7. Train the GAN

def train_gan(generator, discriminator, gan, data,
epochs=10000, batch_size=128):
half_batch = batch_size // 2

for epoch in range(epochs):
Trailn Discriminator
idx = np.random.randint(@, data.shapel[0],
half_batch)
real_images = datal[idx]
noise = np.random.normal(@, 1, (half_batch, 100))
fake_images = generator.predict(noise)

d loss _real =
discriminator.train_on_batch(real_images,
np.ones((half_batch, 1)))

d loss _fake =
discriminator.train_on_batch(fake_images,
np.zeros((half_batch, 1)))

d loss = 0.5 * np.add(d_loss_real, d_loss_fake)

Traln Generator

noise = np.random.normal(@, 1, (batch_size, 100))

g loss = gan.train_on_batch(noise,
np.ones((batch_size, 1)))

Print progress
1f epoch % 1000 == 0:
print (f"Epoch {epoch} | D Loss: {d _loss[0]} |
G Loss: {g loss}")
plot_generated _images(generator)

() DINESHLAL q

Step-by-Step Guide to

Building Your First GAN

7. Train the GAN
This is the core training loop. In each
epoch, we:
e Train the discriminator on a batch of
real and fake images.
e Train the generator to fool the
discriminator.
e Periodically print the progress and
visualize generated images.

def plot_generated images(generator):
noise = np.random.normal(o, 1, (16, 100))
generated_images = generator.predict(noise)
generated_images (generated_images + 1) / 2.0

plt.figure(figsize=(4, 4))
for i in range(16):
plt.subplot(4, 4, i+1)
plt.imshow(generated images[i, :, :, 0],
cmap="'gray')
plt.axis('off")
plt.show()

train_gan(generator, discriminator, gan, x_train)

() DINESHLAL q

Step-by-Step Guide to

Building Your First GAN

8. Observe the Results
e As the training progresses, youll
notice the generated Iimages
becoming more and more realistic.
Initially, theyll be random noise, but

gradually theyll start resembling
handwritten digits.

() DINESHLAL q

e You've now built your first generative
Al model using GANs! This tutorial
provided a practical introduction to
generative modeling in Python.

Next Steps:

e Explore Advanced Architectures:
Dive into more complex GANs like
DCGANSs (Deep Convolutional GANSs)
and WGANs (Wasserstein GANs).

e Generate Different Data: Try
generating color images, text, or
even music.

[DINESHLAL —é

Next Steps:

e Experiment with PyTorch:
Implement the same GAN using
another popular deep learning
framework.

e Real-World Applications: Think
about how you can apply
generative Al to solve problems in
your field.

[DINESHLAL —ﬁ

e Special thanks to Gemini and
ChatGPT for all the help on content

e Follow along for more informative
articles in Generative Al space

(dahaty

(1) DINESHLAL

