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Generative AI is a rapidly
growing field that allows
computers to create new
content like text, images, and
music, much like humans do. 
This guide offers a beginner-
friendly, step-by-step tutorial
to build your first generative AI
model. 
We'll use popular libraries such
as TensorFlow, Keras, and
PyTorch. By the end, you'll
grasp the basics and have
built a simple model.

Introduction
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Generative Adversarial Networks
(GANs): These are the focus of our
tutorial. They work by having two
neural networks compete: one
generates content, the other judges
its quality.
Variational Autoencoders (VAEs):
These models learn the underlying
structure of data to generate new,
similar data.
Transformers: Primarily used for text
and sequences, these models are
behind powerful language models
like GPT-3.

Key Generative AI
Models
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Prerequisites

Programming Skills: Basic
understanding of Python is essential.
Frameworks and Libraries: 

TensorFlow/Keras (or PyTorch)
- Deep learning frameworks.
NumPy - For numerical
operations.
Matplotlib - For data
visualization.
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Prerequisites

Development Environment:
Python 3.8+ installed.
Jupyter Notebook or an IDE (e.g.,
PyCharm, VS Code).
Install necessary libraries using
pip: pip install tensorflow numpy
matplotlib

Dataset:
We'll use the MNIST dataset, a
classic collection of handwritten
digits (0-9). Think of it as the
"Hello, World!" of image data.
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Understanding GANs1.
A GAN has two main parts:

Generator: This creates new
data instances, like images, that
resemble the training data.
Imagine it as an art forger trying
to create a masterpiece.
Discriminator: This acts like an
art expert, trying to distinguish
between real images from the
training set and fake ones
created by the generator.

Step-by-Step Guide to
Building Your First GAN
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Understanding GANs1.
These two networks are in a
constant battle. The generator
tries to fool the discriminator,
while the discriminator tries to
catch the fakes. This "adversarial
training" is what makes GANs so
powerful.

Step-by-Step Guide to
Building Your First GAN
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2. Import Required Libraries

Step-by-Step Guide to
Building Your First GAN

import tensorflow as tf
from tensorflow.keras.layers import
Dense, Reshape, Flatten, Dropout
from tensorflow.keras.models import
Sequential
import numpy as np
import matplotlib.pyplot as plt
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3. Load the Dataset

This code loads the MNIST dataset and
preprocesses it. Normalizing the pixel
values to a range of -1 to 1 helps the
GAN train more effectively.

Step-by-Step Guide to
Building Your First GAN

# Load MNIST dataset 

(x_train, _), (_, _) =
tf.keras.datasets.mnist.load_data() 

# Normalize images to [-1, 1] range for
better GAN performance 
x_train = x_train / 127.5 - 1.0 x_train =
x_train.reshape(-1, 28, 28, 1)
print(f"Dataset shape: {x_train.shape}")
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4. Build the Generator
This code defines the generator
network. It takes a random noise vector
(of size 100) as input and uses dense
layers with ReLU activation to transform
it into a 28x28 image. The tanh
activation ensures the output is in the
desired range.

Step-by-Step Guide to
Building Your First GAN

def build_generator(): 
 model = Sequential() 
 model.add(Dense(128, input_shape=(100,),
activation='relu')) 
 model.add(Dense(784, activation='tanh'))
return model

# Output size = 28x28=784
model.add(Reshape((28, 28, 1))) return
model generator = build_generator()
generator.summary()
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5. Build the Discriminator
This code defines the discriminator. It
takes a 28x28 image as input, flattens it,
and uses dense layers to classify it as
real (output close to 1) or fake (output
close to 0).

Step-by-Step Guide to
Building Your First GAN

def build_discriminator(): 
 model = Sequential()     
 model.add(Flatten(input_shape=(28, 28,
1))) 
 model.add(Dense(128, activation='relu'))      
 model.add(Dense(1,
activation='sigmoid')) 
# Output: Real (1) or Fake (0)
 return model 

discriminator = build_discriminator()
discriminator.summary()
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6. Compile the GAN Components
Here, we compile the discriminator with
the binary_crossentropy loss function
and the adam optimizer. We also
create the combined GAN model, where
the generator's output is fed into the
discriminator.

Step-by-Step Guide to
Building Your First GAN

# Compile the discriminator

discriminator.compile(loss='binary_crosse
ntropy', optimizer='adam',
metrics=['accuracy']) 

discriminator.trainable = False # Freeze
discriminator during generator training
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6. Compile the GAN Components
Here, we compile the discriminator with
the binary_crossentropy loss function
and the adam optimizer. We also
create the combined GAN model, where
the generator's output is fed into the
discriminator.

Step-by-Step Guide to
Building Your First GAN

# Build the GAN model
def build_gan(generator, discriminator):
 model = Sequential()     
 model.add(generator)       
 model.add(discriminator) 
 return model 

gan = build_gan(generator, discriminator)
gan.compile(loss='binary_crossentropy',
optimizer='adam')
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7. Train the GAN

Step-by-Step Guide to
Building Your First GAN

def train_gan(generator, discriminator, gan, data,
epochs=10000, batch_size=128):
    half_batch = batch_size // 2

    for epoch in range(epochs):
        # Train Discriminator
        idx = np.random.randint(0, data.shape[0],
half_batch)
        real_images = data[idx] 
        noise = np.random.normal(0, 1, (half_batch, 100)) 
        fake_images = generator.predict(noise) 

        d_loss_real =
discriminator.train_on_batch(real_images,
np.ones((half_batch, 1))) 
        d_loss_fake =
discriminator.train_on_batch(fake_images,
np.zeros((half_batch, 1))) 
        d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) 

        # Train Generator
        noise = np.random.normal(0, 1, (batch_size, 100)) 
        g_loss = gan.train_on_batch(noise,
np.ones((batch_size, 1))) 

        # Print progress
        if epoch % 1000 == 0:
            print (f"Epoch {epoch} | D Loss: {d_loss[0]} |
G Loss: {g_loss}")
            plot_generated_images(generator) 
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7. Train the GAN
This is the core training loop. In each
epoch, we:

Train the discriminator on a batch of
real and fake images.
Train the generator to fool the
discriminator.
Periodically print the progress and
visualize generated images.

Step-by-Step Guide to
Building Your First GAN

def plot_generated_images(generator):
    noise = np.random.normal(0, 1, (16, 100)) 
    generated_images = generator.predict(noise)
    generated_images = (generated_images + 1) / 2.0 

    plt.figure(figsize=(4, 4))
    for i in range(16):
        plt.subplot(4, 4, i+1)
        plt.imshow(generated_images[i, :, :, 0],
cmap='gray')
        plt.axis('off')
    plt.show()

train_gan(generator, discriminator, gan, x_train)
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8. Observe the Results
As the training progresses, you'll
notice the generated images
becoming more and more realistic.
Initially, they'll be random noise, but
gradually they'll start resembling
handwritten digits.

Step-by-Step Guide to
Building Your First GAN



Conclusion

You've now built your first generative
AI model using GANs! This tutorial
provided a practical introduction to
generative modeling in Python.

Next Steps:
Explore Advanced Architectures:
Dive into more complex GANs like
DCGANs (Deep Convolutional GANs)
and WGANs (Wasserstein GANs).
Generate Different Data: Try
generating color images, text, or
even music.
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Conclusion

Next Steps:
Experiment with PyTorch:
Implement the same GAN using
another popular deep learning
framework.
Real-World Applications: Think
about how you can apply
generative AI to solve problems in
your field.
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THANK YOU

Special thanks to Gemini and
ChatGPT for all the help on content
Follow along for more informative
articles in Generative AI space


